
Energy-Efficient Joint Offloading and Resource
Allocation for Deadline-Constrained Tasks in

Multi-Access Edge Computing
Chuanchao Gao, Arvind Easwaran

College of Computing and Data Science
Energy Research Institute @ NTU, Interdisciplinary Graduate Programme

Nanyang Technological University, Singapore
gaoc0008@e.ntu.edu.sg, arvinde@ntu.edu.sg

Abstract—This paper addresses the deadline-constrained task
offloading and resource allocation problem in multi-access edge
computing. We aim to determine where each task is offloaded
and processed, as well as corresponding communication and
computation resource allocations, to maximize the total saved
energy for IoT devices, while considering task deadline and
system resource constraints. Especially, our system allows each
task to be offloaded to one of its accessible access points (APs) and
processed on a server that is not co-located with its offloading AP.
We formulate this problem as an Integer Nonlinear Programming
problem and show it is NP-Hard. To address this problem,
we propose a Graph-Matching-based Approximation Algorithm
(GMA), the first approximation algorithm of its kind. GMA leverages
linear relaxation, tripartite graph construction, and a Linear
Programming rounding technique. We prove that GMA is a 1−α

2+ϵ
-

approximation algorithm, where ϵ is a small positive value, and
α (0≤α<1) is a system parameter that ensures the resource
allocated to any task by an AP or a server cannot exceed α
times its resource capacity. Experiments show that, in practice,
GMA’s energy saving achieves 97% of the optimal value on average.

Index Terms—multi-access edge computing, task offloading
and resource allocation, deadline-constrained workload

I. INTRODUCTION

Recent advances in hardware, software, and communication
technologies—such as ultra-reliable low-latency communica-
tion of 5G and low-power wide-area networks—have paved
the way for Internet of Things (IoT) to become the next tech-
nological frontier [1]. Emerging IoT applications, including
object detection and decision-making in autonomous driving
[2], are becoming increasingly computation-intensive due to
the rapid evolution of Artificial Intelligence (AI) technologies.
These applications pose substantial deployment challenges
for battery-powered and resource-constrained IoT devices,
particularly those with stringent latency requirements [3].

To address these challenges, Multi-access Edge Computing
(MEC) has emerged as a promising paradigm for supporting
computation-intensive and time-sensitive IoT applications. In

This work was supported in part by the MoE Tier-2 grant MOE-
T2EP20221-0006, and in part by the National Research Foundation, Prime
Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

MEC, end devices (i.e., IoT devices) can offload computation-
intensive tasks to nearby Access Points (APs) via wireless
networks. These tasks are subsequently forwarded to some
edge server through a wired backhaul network for processing.
Unlike conventional cloud computing, MEC deploys servers
in close proximity to end devices, significantly reducing
communication latency and enabling prompt responses to
latency-sensitive tasks. While offloading tasks to MEC servers
conserves energy on end devices, it also introduces commu-
nication latency and additional energy consumption associ-
ated with the offloading process. Moreover, communication
and computation resources at APs and servers are limited.
Therefore, an effective strategy for task mapping (to APs and
servers) and resource allocation (for offloading and processing)
is essential for tasks with hard deadlines.

Numerous studies have investigated deadline-constrained
task offloading and resource allocation problems. Some studies
assume that each task must be offloaded to a fixed AP and
focus solely on mapping tasks to servers [4]–[13]. Others
consider a model where each task is processed by the server
co-located with the AP it is offloaded to, thereby concentrating
only on task-to-AP mapping [14]–[18]. In the former case,
bandwidth limitations at a single AP may lead to conges-
tion during task offloading, while in the latter, the lack of
flexibility in backhaul task forwarding can result in highly
imbalanced server workloads. Although some studies have
explored task mapping to both APs and servers [19], this
area remains underexplored. Furthermore, existing research
on deadline-constrained task offloading and resource allo-
cation typically relies on exponential-time exact algorithms
for optimal solutions [8], [16], or polynomial-time heuristic
algorithms that lack performance guarantees [4]–[7], [9]–
[15], [17], [18]. Consequently, the domain of polynomial-
time approximation algorithms—heuristics with provable per-
formance guarantees—remains largely unexplored. Approxi-
mation algorithms not only improve computational efficiency
compared to exponential-time methods but also offer perfor-
mance guarantees absent in typical heuristics.

This paper addresses the deadline-constrained task offload-
ing and resource allocation problem in MEC, aiming to max-

imize the total energy savings of end devices while satisfying
task deadlines and system resource constraints. In our model,
each task can be offloaded to one of several accessible APs
(as opposed to a fixed AP). Thus, we must determine the AP
to which each task is offloaded, along with the associated
communication resource allocation. Additionally, each task
can be processed on a server that is not necessarily co-located
with its offloading AP. Therefore, we must also determine the
server on which each task is processed after offloading, and
allocate the corresponding computation resources. Moreover,
to enhance the flexibility and efficiency of the offloading
strategy, our model incorporates dynamic offloading power
control, which allows each end device to adjust its transmis-
sion power during the offloading process. We refer to this
Deadline-constrained Task offloading and Resource allocation
Problem as DTRP, and formulate it as an Integer Nonlinear
Programming (INLP) problem. The Maximum Weight 3-
Dimensional Matching (MW3DM) problem can be reduced
to a special case of DTRP, in which each job consume full
capacity of the AP and server it is mapped to. MW3DM is
NP-Hard [20], implying that DTRP is also NP-hard.

Furthermore, we propose the first polynomial-time ap-
proximation algorithm for DTRP with provable performance
guarantees, termed the Graph Matching-based Approximation
Algorithm (GMA). GMA consists of three main steps: 1) We
discretize resource allocations for tasks and formulate a Linear
Programming (LP) relaxation of the original problem. 2) Based
on the LP solution, we create one or more AP/server nodes
for each AP/server and construct a weighted tripartite graph
connecting tasks, AP nodes, and server nodes. 3) We apply
an LP rounding method to derive a matching in the tripartite
graph, which is mapped to a feasible solution of DTRP.

The main contributions of this paper are as follows:
• We investigate the DTRP in MEC with both communi-

cation and computation contentions, aiming to maximize
the total saved energy for end devices. This involves
determining task mappings to both APs and servers, the
resource allocations for task offloading and processing,
and the power for task offloading. We formulate DTRP
as a INLP problem and prove it is NP-Hard.

• Based on a novel technique to transform DTRP to a
weighted tripartite graph matching problem, we propose
the first polynomial-time approximation algorithm, GMA,
for DTRP. We prove that GMA is a 1−α

2+ϵ -approximation
algorithm for DTRP (the objective obtained by GMA is
at least 1−α

2+ϵ of the optimal objective of DTRP), where
ϵ is a small positive value, and α (0≤α<1) is a system
parameter indicating that any AP or server cannot allocate
more than α times its resource capacity to any single task.

• We experimentally evaluate GMA and compare it with
two existing heuristic algorithms [19] for DTRP. Results
show that the energy savings obtained by GMA is 97%
of the optimal value on average, while outperforming its
own theoretical bound and the two heuristic algorithms
by 56%, 22% and 7% on average, respectively. GMA

outperforms the heuristic algorithms, even while those

algorithms do not provide any performance guarantees.
Paper Organization. Section II surveys related work, and

Section III specifies the system model and optimization prob-
lem. Section IV presents our algorithmic solution and derives
its theoretical guarantee. Section V presents the experiment
results, and Section VI concludes the paper.

II. LITERATURE REVIEW

Due to the promising potential of MEC, the joint task
offloading and resource allocation problem has received con-
siderable attention in recent research. For a comprehensive
understanding of this field, readers are referred to relevant
surveys [3], [21]–[23]. Research efforts in this domain are
generally categorized into deadline-constrained problems and
deadline-free problems (which typically focus on minimizing
response time). In this section, we review the state-of-the-art
algorithms developed for deadline-constrained task offloading
and resource allocation in MEC.

The joint task offloading and resource allocation prob-
lem becomes particularly challenging when considering both
bandwidth contention in wireless networks and computation
resource contention at edge servers. Some studies simplify the
problem by considering only computation resource contention
[4]–[7], [14], [15]. To tackle these simplified scenarios, re-
searchers [4]–[6], [14] have proposed approaches that decom-
pose the original problem into two subproblems—task map-
ping and resource allocation—and iteratively solve them until
convergence. Others have applied reinforcement learning [7],
[15]. While these methods exhibit polynomial-time complex-
ity, they lack theoretical performance guarantees. Moreover,
these studies omit bandwidth contention in MEC.

Other works explicitly address deadline-constrained task
offloading and resource allocation while considering both com-
munication and computation contentions [8]–[13], [16]–[19].
Some adopt exact (optimal) methods such as the branch-and-
bound algorithm [16] or Benders decomposition [8], [16], but
their exponential time complexity limits practicality in real-
world systems. To improve scalability, several studies have
proposed heuristic algorithms. For instance, decomposition-
based methods are used to iteratively solve task mapping and
resource allocation subproblems [9], [17], [18], while deep
reinforcement learning approaches are adopted in [10], [11].
Other works explore meta-heuristics, including migrating birds
optimization [12] and ant colony optimization [13], or employ
greedy strategies based on task deadlines [19]. Although these
heuristic methods offer lower computational complexity, they
do not provide any theoretical performance guarantees.

Most existing studies, except [19], make restrictive assump-
tions—either fixing the offloading AP for each task [4]–
[13], or requiring task execution on the server co-located
with the offloading AP [14]–[18]—limiting flexibility and
efficiency of task execution in practical MEC deployments.
We address these limitations by considering a more general
model that jointly optimizes task mapping to both APs and
servers, resource allocation for offloading and processing,
and dynamic offloading power control under communication

End
Device

Co-located
AP + Server

Server

Backhaul N/W

Fig. 1. A typical MEC as considered in this work

and computation contentions. We further propose the first
polynomial-time approximation algorithm for DTRP with
provable performance guarantees.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. MEC Architecture

An MEC comprises end devices, APs, and servers (Fig. 1).
Tasks generated by end devices can be offloaded to nearby APs
through wireless networks, and further forwarded to different
servers via the wired backhaul network for processing. We
denote the set of tasks as I, where |I| = I (| · | returns the
number of items in a set). Each task i ∈ I is associated with
four parameters: si, ηi, and di. Here, si represents the input
size of i measured in Megabits (Mb). ηi denotes the number
of CPU cycles required to process 1 bit of input for i, which
can be obtained by profiling task execution [24]. di denotes
the end-to-end deadline of i specified in seconds. In this paper,
we consider non-splittable tasks, and each task is either fully
processed locally or fully processed on some remote server.

We denote the set of APs as J , where |J | = J . To
better balance AP workloads, each end device can offload its
tasks to one of its nearby APs, and we denote the accessible
set of APs for a task i as Ji ⊆ J . In real-world systems,
resource allocations are typical discrete. We use b̄ to denote
the bandwidth unit, measured in MegaHertz (MHz), and bj to
denote the bandwidth capacity for each AP j ∈ J , measured
in number of bandwidth units. Let p̄ be the power unit,
measured in Watts, and pmax be the largest number of power
units that end devices can use for task offloading. We denote
the set of servers as K, and denote |K| = K. We denote
the computation resource unit as c̄, specified in CPU cycles/s,
and the computation resource capacity of each server k ∈ K
as ck, specified in number of computation resource units. To
ensure fairness in resource allocation, we introduce a user-
defined system parameter α (0 ≤ α < 1), referred to as
the resource allocation bound. This parameter ensures that the
resource allocated to any single task by an AP or a server
cannot exceed α times its resource capacity. In practice, similar
constraints are employed by major cloud service providers to
cap the computational resources assigned to individual tasks
[25]–[27], and by multi-antenna APs to limit the bandwidth
allocated to a single device due to hardware limitations [28]. In
this paper, we focus on the problem with the same α for both
communication and computation resources. We argue that our

proposed solution can also be applied to the problem where
the α for communication resource and the α for computation
resource are different.

B. Problem Formulation

Local Computing: The local processing time of task i, tli, is
given by tli = siηi/fi, where fi is the computation resource
capacity available for processing task i locally, specified in
CPU cycles/s. In this paper, we assume tasks can meet their
deadlines when they are processed locally. The power per
CPU cycle for local processing of tasks is given by pli = ϱf2

i

[29], which is widely adopted in the literature. ϱ is the energy
consumption coefficient, depending on the chip architecture.
Therefore, the energy consumption for local processing of i,
El

i , is given as:

El
i = pli · siηi = ϱf2

i siηi (1)

Task Offloading: We assume that Orthogonal Frequency
Division Multiplexing (OFDM) technology is used in the
wireless network. OFDM divides the network into multiple
orthogonal sub-channels, which can minimize interference be-
tween tasks during offloading [30]. Suppose task i is offloaded
to AP j. Based on Shannon’s theorem [31], the task offloading
rate, rij , can be described as:

rij = bij · b̄ · log2(1 + poij · p̄ ·Gij/σ
2) (2)

bij is the allocated bandwidth units to task i, Gij is the channel
power gain for offloading task i, and σ is the average noise
power. poij is the power units used for offloading i, which
cannot exceed pmax. We assume Gij and σ are given for each
task i and each AP j ∈ Ji. Thus, the offloading time of task
i, toij , is given as

toij =
si
rij

=
si

bij · b̄ · log2(1 + poij · p̄ ·Gij/σ2)
. (3)

The consumed offloading energy, Eo
ij , can be computed as:

Eo
ij = poij · p̄ · toij =

poij · p̄ · si
bij · b̄ · log2(1 + poij · p̄ ·Gij/σ2)

. (4)

We use Eij to denote the saved energy for end devices when
task i is offloaded to AP j given by:

Eij = El
i − Eo

ij (5)

Task Forwarding: Allowing tasks to be forwarded to dif-
ferent servers after being offloaded has advantages in bal-
ancing server workloads and mitigating wireless network
coverage limitations. We consider a wired backhaul network
that connects APs and servers and has enough capacity to
support data transmission with no communication contention1.
Additionally, we consider the backhaul network is enabled
with Software Defined Network technology [24], providing
monitor-based latency information among APs and servers.
Thus, we assume a constant data transmission delay between

1The bandwidth capacity of the IEEE 802.11n Wi-Fi protocol is 120 MHz
[32], and that of a wired optical transmission system is 4.5 THz [33].

a given pair of AP and server in the backhaul network [24],
i.e., the allocated bandwidth to each task in the wired backhaul
network depends on its data size. Let δjk be the delay between
AP j and server k, where δjk = δkj . When AP j and server
k are co-located (as in Fig. 1), δjk = 0.

Server Computing: The total CPU cycles required to process
task i is siηi, and therefore the processing time of task i on
server k ∈ K, tpik, is given by tpik = si · ηi/(cik · c̄), where cik
is the allocated computation resource units to task i.

We use binary variables xij ∈ x and yik ∈ y to denote
the offloading and processing decisions of task i, respectively.
Specifically, xij = 1 if task i is to be offloaded to AP j ∈ Ji;
otherwise, xij = 0. Similarly, yik = 1 if and only if task i is
to be processed on server k ∈ K. Moreover, we use the integer
variables bij ∈ b and poij ∈ p to denote the bandwidth units to
be allocated to task i by AP j and the corresponding allocated
offloading power units, respectively. We also use the integer
variable cik ∈ c to denote the computation resource units to
be allocated to task i by server k. Here, the bold notation is
used to denote sets of variables (i.e., x denotes {xij |∀i,∀j}).
Additionally, we use OPTP to denote the optimal objective
value of a defined problem P . For convenience, we summarize
major notations used in this paper in Table I.

In this paper, we aim to find a task mapping ⟨x,y⟩ and
resource allocation ⟨b, c,p⟩ solution such that the total saved
energy of end devices can be maximized, while satisfying the
system resource and task deadline constraints. We refer to this
Deadline-constrained Task offloading and Resource allocation
Problem as DTRP and define it as follows.

(DTRP) max
∑

i∈I,j∈J ,k∈K xijyikEij (6a)

subject to:
∑

j∈Ji
xijt

o
ij +

∑
j∈Ji,k∈K xijyikδjk

+
∑

k∈K yikt
p
ik ≤ di,∀i ∈ I

(6b)∑
j∈Ji

xij ≤ 1,∀i ∈ I (6c)∑
j∈J\Ji

xij = 0,∀i ∈ I (6d)∑
k∈K yik ≤ 1,∀i ∈ I (6e)∑
i∈I bij ≤ bj ,∀j ∈ J (6f)∑
i∈I cik ≤ ck,∀k ∈ K (6g)

bij ≤ α · bj , cik ≤ α · ck, ∀i ∈ I,∀j ∈ J ,∀k ∈ K (6h)
poij ≤ pmax, ∀i ∈ I,∀j ∈ J (6i)

xij , yik ∈ {0, 1}, poij , bij , cik ∈ Z≥0,∀i ∈ I,∀j ∈ J ,∀k ∈ K (6j)

Constraint (6b) guarantees that each offloaded task can be
completed within its deadline. Constraints (6c)∼(6e) ensure
that a task i can only be offloaded to at most one accessible
AP and processed on at most one server. Moreover, constraints
(6f) and (6g) ensure that the total resource allocated to all
tasks by an AP or a server cannot exceed its capacity. Finally,
constraints (6h) and (6i) guarantee that the resource allocation
bound and offloading power bound are satisfied. DTRP is an
INLP problem due to the nonlinear objective function (6a)
and task deadline constraint (6b). Next, we show that DTRP
is NP-Hard in the following lemma.

Lemma 1. DTRP is NP-Hard.

TABLE I
NOTATION (KEY PARAMETERS AND VARIABLES)

symb. definition

I task set, where |I| = I . Each task i ∈ I is associated with input
size si, CPU demand per bit data ηi, CPU cycle allocation rate
for local processing fi, and deadline di

J AP set, where j ∈ J denotes an AP, and |J | = J
Ji set of APs to which task i can be offloaded (Ji ⊆ J)
K server set, where k ∈ K denotes a server, and |K| = K
δjk latency between AP j and server k in the backhaul network
bj total number of bandwidth units (b̄) of AP j ∈ J
ck total number of computation resource units (c̄) of server k ∈ K
α resource allocation bound of all APs and servers
toij offloading time of task i to AP j

tpik processing time of task i on server k
pmax max offloading power units (p̄) that can be used for any job
El

i energy consumed for processing task i locally
Eo

ij energy consumed for offloading task i to AP j

Eij energy saved by offloading task i to AP j for remote processing
φ resource discretization constant; Bm = φm, Cn = φn

xij binary var., if task i is offloaded to AP j; x = {xij | ∀i, ∀j}
yik binary var., if task i is processed on server k; y = {yik | ∀i, ∀k}
bij integer var., bandwidth units allocated to task i by AP j; b =

{bij | ∀i, ∀j}
cik integer var., computation resource units allocated to task i by

server k; c = {cik | ∀i,∀k}
poij integer var., allocated power units used to offload task i to AP

j; p = {poij | ∀i,∀j}

Proof. The decision version of DTRP can be defined as
follows: given an instance of DTRP and a target energy saving
E, does there exist a feasible solution ⟨x,y,b, c,p⟩ such that
the total energy saving is at least E? A given solution for the
decision version of DTRP can be represented in polynomial
size and verified in polynomial time with respect to the input
size of DTRP. Therefore, DTRP is an NP problem.

Next, we show that DTRP is NP-Hard through a reduction
from the MW3DM problem, known to be NP-Hard [20].

Given an instance of MW3DM: three disjoint sets V1, V2,
and V3, a set of weighted triplets T ⊆ V1 × V2 × V3, each
with weight u(v1, v2, v3), and the goal is to find a maximum
weight matching such that each element appears in at most
one triplet. We construct a special case of DTRP as follows:

• Let each job i in DTRP correspond to an element in V1,
each AP j in DTRP correspond to an element in V2, and
each server k in DTRP correspond to an element in V3.

• For every triplet (i, j, k) ∈ T , define a feasible job
mapping in DTRP where job i is offloaded to AP j and
processed on server k.

• Assume that each job consumes the full capacity of the
AP and server it is mapped to (i.e., resource contention
constraints enforce that no AP or server can be shared
across jobs).

• Let the energy saving of mapping job i to AP j and server
k, with resource allocations bj and ck, equal u(v1, v2, v3).

Then, the goal of maximizing the total energy saving in this
special case of DTRP is equivalent to solving the MW3DM
problem. Since MW3DM is NP-Hard, this special case of
DTRP is NP-Hard. Therefore, the general DTRP problem,
which generalizes this instance, is also NP-Hard.

IV. GMA APPROXIMATION ALGORITHM

In MEC, tasks, APs, and servers exist as distinct and
independent groups, motivating us to tackle DTRP using
graph-matching algorithms for MW3DM. However, directly
applying graph matching algorithms may lead to inefficient
resource allocation in MEC, as each AP or server can only
accommodate one task according to the definition of graph
matching (Appendix A). To address this inefficiency, this
section introduces a Graph-Matching-based Approximation
Algorithm (GMA) for DTRP, the first polynomial-time approx-
imation algorithm for DTRP.
GMA (Algorithm 1) consists of three main steps. First, we

perform a resource allocation discretization for reducing the
number of resource allocation options and formulate a new LP
problem based on DTRP (line 1). Second, based on the LP
solution, we construct two bipartite graphs (Appendix B) that
establish task-to-AP mappings and task-to-server mappings,
respectively. Then, we utilize sub-algorithm WTGConstruct

to merge these two bipartite graphs into a weighted tripartite
graph (Appendix C) whose each edge represents a task-AP-
server mapping (line 2). Third, we employ an LP rounding
method to obtain a matching of the weighted tripartite graph
(line 3). This matching is then mapped to a feasible solution
of DTRP (lines 4–7). Later in this section, we will provide a
detailed proof of the theoretical approximation bound for GMA.

A. Resource Allocation Discretization and LP Formulation

The nonlinear objective (6a) and constraint (6b) make
DTRP challenging to solve, even when the integer variables
are relaxed to continuous ones. Since both job mapping and
resource allocation variables are discrete, we can enumerate
all possible combinations of task mappings and resource allo-
cations, and compute the corresponding saved energy for each.
We then focus exclusively on those combinations that satisfy
deadline constraints and yield positive energy savings. This
approach allows us to eliminate the nonlinear task deadline
constraint (6b), while also linearizing the objective (6a), as de-
tailed later in this subsection. However, the number of resource
allocation options grows linearly with the value of bj and
ck, leading to an exponential increase in the total number of
combinations as the input size of bj and ck grows. To mitigate
this issue, we first apply an additional discretization to the
resource allocation variables bij and cik, thereby reducing the
number of candidate options. The remainder of this subsection
presents the discretization procedure and the corresponding LP
formulation. Later in Theorem 1 (Subsection IV-C), we further
show that the optimality gap introduced by this discretization
can be effectively bounded.

We define a discretization constant, φ, where φ > 1. For
each AP j ∈ J , let πj =

⌈
logφ(αbj)

⌉
. The discretized

bandwidth allocations are defined as {B0, B1, ..., Bπj
}, where

Bm = ⌊φm⌋ for m = 0, ..., πj − 1, and Bm = ⌊αbj⌋ for
m = πj . Here, we use the logarithmic operation to ensure
that πj (i.e., bandwidth allocation options) is polynomial in
the size of input bj . Similarly, for each server k ∈ K, let λk =⌈
logφ(αck)

⌉
. The discretized computation resource allocations

Algorithm 1: Graph-Matching-based Approximation (GMA)

1 Discretize task resource allocations and formulate an
LP problem, RDP, based on DTRP. Let z̃ be an
optimal fractional solution to RDP;

2 Construct a weighted tripartite graph H based on z̃
using WTGConstruct;

3 Formulate a relaxed maximum weighted 3-dimensional
matching problem, 3DM, based on H, and apply the
kDMA to obtain a (integral) matching Mz of H;

4 for each Mz(vi, wjr, wks) = 1 do
5 xij ← 1, yik ← 1;
6 bij ← b(vi, wjr, wks), cik ← c(vi, wjr, wks);
7 Calculate poij based on Eqs. (4) and (7);

can be defined as {C0, C1, ..., Cλk
}, where Cn = ⌊φn⌋, for

n = 0, ..., λk − 1, and Cn = ⌊αck⌋, for n = λk.
We denote a task mapping and resource allocation combi-

nation as ⟨i, j,m, k, n⟩, representing that task i is offloaded to
AP j with bandwidth allocation Bm and processed on server k
with computation resource allocation Cn. Given a combination
⟨i, j,m, k, n⟩, we can compute the maximum allowable time
for task offloading based on deadline constraint (6b), i.e.,

toij = τi − δjk − siηi/Cn. (7)

If toij > 0, let toij be the task offloading time. Based on toij
and bandwidth allocation Bm, we can compute the offloading
power poij based on (3), and determine energy Eo

ij based on
Eq. (4). Then, we compute the saved energy associated with
⟨i, j,m, k, n⟩ based on Eq. (5), and we denote it as Eijmkn.
We claim that a combination ⟨i, j,m, k, n⟩ is feasible if the
computed toij > 0, poij ≤ pmax, and Eijmkn > 0. According
to Eq. (7), the following proposition can be obtained.

Proposition 1. A feasible combination ⟨i, j,m, k, n⟩ satisfies
the deadline constraint (6b) of DTRP for task i.

Once resource allocations are discretized, we can enumerate
all ⟨i, j,m, k, n⟩. Let U = maxj∈J πj and V = maxk∈K λk.
The total number of combinations is IJUKV . Let N denote
the set of all feasible ⟨i, j,m, k, n⟩. The time complexity to
obtain the set N is O(IJUKV), which is polynomial in
the input size of DTRP. We define a new binary variable
zijmkn ∈ z for all ⟨i, j,m, k, n⟩, and zijmkn = 1 if and only if
⟨i, j,m, k, n⟩ ∈ N is selected in a task offloading and resource
allocation solution. We relax zijmkn into a continuous variable
of range [0, 1] and define an LP problem, denoted as RDP,
based on DTRP. We formulate RDP as follows 2.

(RDP) max
∑

⟨i,j,m,k,n⟩∈N zijmkn · Eijmkn (8a)

subject to:
∑

j,m,k,n zijmkn ≤ 1, ∀i ∈ I (8b)∑
i,m,k,n zijmknBm ≤ (1− α) · bj , ∀j ∈ J (8c)∑
i,j,m,n zijmknCn ≤ (1− α) · ck, ∀k ∈ K (8d)

2In equations, we use
∑

i,j,m,k,n as a shorthand notation for∑I
i=1

∑J
j=1

∑πj

m=0

∑K
k=1

∑λk
n=0.

zijmkn ≥ 0, ∀⟨i, j,m, k, n⟩ ∈ N (8e)

In RDP, we only consider feasible combinations, so the
deadline and offloading power requirements for each task
are implicitly satisfied. After relaxing z into a continuous
variable, each fractional value of zijmkn represents a portion
of task i. Eq. (8b) ensures that the total portions of each
task i do not exceed 1. In the following bipartite graph
construction, the AP nodes defined for each AP need at most
αbj additional bandwidth resources to accommodate their
connected task nodes in a matching (as shown in the proof
of Lemma 3). To ensure that the final graph matching result
does not violate the bandwidth constraint (6f) of DTRP, we
modify the bandwidth constraint in RDP as constraint (8c)
(i.e., reserve αbj bandwidth for bipartite graph construction).
The same interpretation applies to the computation resource
constraint (8d) of RDP. The following lemma establishes a
relation between the optimal solutions of DTRP and RDP.

Lemma 2. 1−α
φ OPTDTRP ≤ OPTRDP.

Proof. Assume that {x,y,b, c,p} is a feasible solution for
DTRP. Suppose an offloaded task i is offloaded to AP j (xij =
1) with bandwidth allocation bij and offloading power poij , and
processed on server k (yik = 1) with computation resource
allocation cik. Suppose the saved energy by processing i on
the server is Eij . The deadline of task i must be met. Besides,
suppose Bm−1 < bij ≤ Bm and Cn−1 < cik ≤ Cn for some
m and n. As Bπj

= αbj and Cλk
= αck, such m and n always

exist. We then set zijmkn = 1−α
φ , and repeat this assignment

for each offloaded task.
Next, we show that for each zijmkn = 1−α

φ , the corre-
sponding combination ⟨i, j,m, k, n⟩ is always feasible. Since
Cn ≥ cik, allocating Cn computation resource will result in a
shorter processing time compared with allocating cik compu-
tation resource; thus, the allowable time for task offloading toij
computed in Eq. (7) is longer. Since Bm ≥ bij , based on Eq.
(3), a longer offloading time and bandwidth allocation result in
a smaller offloading power, i.e., the offloading power pijmkn

associated with ⟨i, j,m, k, n⟩ is no greater than poij . According
to Eq. (4), a larger bandwidth allocation and smaller offload-
ing power lead to a smaller offloading power consumption.
This leads to a greater saved energy for ⟨i, j,m, k, n⟩, i.e.,
Eijmkn ≥ Eij . Since toij > 0, pijmkn ≤ poij ≤ pmax, and
Eijmkn ≥ Eij > 0, the combination ⟨i, j,m, k, n⟩ is feasible.
Besides, we have the following inequality.∑

i,j,k
1−α
φ xijyikEij ≤

∑
⟨i,j,m,k,n⟩∈N zijmknEijmkn.

Moreover, for each offloaded task i, we construct only one
⟨i, j,m, k, n⟩ for it, which ensures the resulting z will satisfy
constraint (8b) in RDP. Further, because Bm−1 < bij , Bm <
bijφ. Thus, for each i ∈ I and each j ∈ J , we have∑

m,k,n zijmknBm < 1−α
φ xijbijφ = (1− α)xijbij .

According to constraint (6f) in DTRP,
∑

i∈I xijbij ≤
bj . Thus, we conclude that

∑
i,m,k,n zijmknBm ≤ (1 −

α)bj , ∀j ∈ J , and the resulting z satisfies constraint (8c) in

TABLE II
NOTATION USED IN SECTION IV

symb. definition

πj πj =
⌈
logφ(αbj)

⌉
, number of discrete bandwidth allocation

options after discretization; where U = maxj∈J πj

λk λk =
⌈
logφ(αck)

⌉
, number of discrete computational resource

allocation options after discretization; where V = maxk∈K λk

zijmkn relaxed selection var. of combination ⟨i, j,m, k, n⟩
Eijmkn energy saved associated with combination ⟨i, j,m, k, n⟩
z̃ijmkn z̃ijmkn ∈ z̃, optimal fractional solution of LP problem RDP
x̃ijm x̃ijm ∈ x̃, derived from Eq. (9) based on z̃ijmkn

ỹikn ỹikn ∈ ỹ, derived from Eq. (10) based on z̃ijmkn

Bm m ∈ {0, 1, ..., πj}, discretized bandwidth allocation
Cn n ∈ {0, 1, ..., λj}, discretized computation resource allocation
Bx̃ Bx̃ = (Vx̃,Wx̃, Ex̃), bipartite graph constructed based on x̃
Bỹ Bỹ = (Vỹ,Wỹ, Eỹ), bipartite graph constructed based on ỹ
b(e) bandwidth allocation associated with edge e in a graph
c(e) computational res. allocation associated with edge e in a graph
x̃j sorted list of x̃ijm defined in lines 4–5 of Algorithm 2
x̃j,s the s-th element in the sorted list x̃j

Fx̃ fractional matching of Bx̃ derived from x̃
Mx a (integral) matching of Bx̃

RDP. Similar arguments can be used to prove that the resulting
z also satisfies constraint (8d) in RDP. Thus, given a feasible
solution for DTRP with an objective value P , we can always
construct a feasible solution for RDP with an objective value
no less than 1−α

φ P . In particular, we can construct a feasible
solution for RDP from the optimal solution of DTRP, with
an objective value 1−α

φ OPTDTRP.

B. Bipartite Graph Construction

RDP is an LP problem, efficiently solvable using algorithms
such as the simplex algorithm or the ellipsoid algorithm.
Leveraging an optimal solution for RDP enables us to establish
one or more AP or server nodes for each respective AP or
server. This facilitates the creation of a weighted tripartite
graph, allowing multiple tasks to be potentially mapped to the
same AP or server to increase resource allocation efficiency.
Directly constructing the tripartite graph can be quite intricate;
hence, we first utilize BGConstruct (Algorithm 2) to create
two bipartite graphs illustrating the task-to-AP and task-to-
server mappings, respectively. In the subsequent subsection,
we will introduce how to merge these two bipartite graphs
into a weighted tripartite graph.

Based on an optimal solution for RDP, denoted as z̃, we
define two variables x̃ijm ∈ x̃ and ỹikn ∈ ỹ as follows.

x̃ijm =
∑

k,n z̃ijmkn,∀i ∈ I,∀j ∈ J ,m = 0, ..., πj (9)

ỹikn =
∑

j,m z̃ijmkn,∀i ∈ I,∀k ∈ K, n = 0, ..., λk (10)

As x̃ijm and ỹikn are both in the range [0, 1] due to con-
straint (8b), they represent a portion of task i’s mapping and
resource allocation. For example, x̃ijm = 1

2 indicates that half
of task i is offloaded to AP j with a discretized bandwidth
allocation Bm. Based on x̃ (ỹ), we create one or more AP
(server) nodes for each AP (server) and construct bipartite
graph Bx̃ (Bỹ) connecting tasks and AP (server) nodes.

෥𝒙𝒊𝒋𝒎 sort 𝓔 ෤𝐱 create 𝐛 update 𝑭 ෤𝐱 update

෤𝑥1𝑗8 = 0.5 ෤𝑥𝑗,1 (𝑣1, 𝑤𝑗1) 𝑏 𝑣1, 𝑤𝑗1 = 𝐵8 𝐹෤𝐱 𝑣1, 𝑤𝑗1 = 0.5

෤𝑥2𝑗7 = 1 ෤𝑥𝑗,2
(𝑣2, 𝑤𝑗1)

(𝑣2, 𝑤𝑗2)
𝑏 𝑣2, 𝑤𝑗1 = 𝐵7

𝑏 𝑣2, 𝑤𝑗2 = 𝐵7

𝐹෤𝐱 𝑣2, 𝑤𝑗1 = 0.5

𝐹෤𝐱 𝑣2, 𝑤𝑗2 = 0.5

෤𝑥3𝑗6 = 0.5 ෤𝑥𝑗,3 (𝑣3, 𝑤𝑗2) 𝑏 𝑣3, 𝑤𝑗2 = 𝐵6 𝐹෤𝐱 𝑣3, 𝑤𝑗2 = 0.5

෤𝑥4𝑗5 = 0.4 ෤𝑥𝑗,4 (𝑣4, 𝑤𝑗3) 𝑏 𝑣4, 𝑤𝑗3 = 𝐵5 𝐹෤𝐱 𝑣4, 𝑤𝑗3 = 0.4

AP 𝑗

𝑤𝑗1

𝑣1 𝑣2

𝑤𝑗2

𝑣3 𝑣4

𝑤𝑗3

Fig. 2. Example of edge creation for AP j when nj > 1: Given that∑
x̃ijm = 2.4, we create three AP nodes for AP j (where i denotes the task

node index and m indicates the bandwidth allocation level Bm). The values
of x̃ijm are sorted in descending order of m, and we denote the s-th element
in the sorted list as x̃j,s. Edges between task nodes and AP nodes are then
constructed based on this sorted list, with AP nodes ordered as wj1, wj2, wj3.
The first element, x̃j,1, corresponds to x̃1j8. Therefore, we create an edge
(v1, wj1) between task node v1 and AP node wj1, with bandwidth allocation
b(v1, wj1) = B8 and edge fraction Fx̃(v1, wj1) = x̃1j8 = 0.5. The second
element, x̃j,2, corresponds to x̃2j7. Since x̃1j8+ x̃j,2 > 1, define two edges
based on x̃j,2, (v2, wj1) and (v2, wj2). Specifically, we ensure that the
total fraction assigned to each AP node does not exceed 1. For example,
Fx̃(v1, wj1) + Fx̃(v2, wj1) = 1, and the remaining portion is assigned
as Fx̃(v2, wj2) = x̃1j8 + x̃j,2 − 1 = 0.5. The edge construction process
continues similarly for the remaining elements x̃j,s in the sorted list.

Here, we provide an illustration of constructing Bx̃ as an
example. The detailed steps for constructing Bx̃ and the result-
ing fractional matching Fx̃ for Bx̃ are outlined in Algorithm 2.
Let Bx̃ = (Vx̃,Wx̃, Ex̃). Vx̃ is the set of task nodes, and Wx̃

is set of AP nodes (lines 1–2). By summing up task fractions
mapped to AP j, we determine the number of AP nodes that
are defined for AP j, which is denoted as nj and given by

nj ≜
⌈∑

i,m x̃ijm

⌉
,∀j ∈ J . (11)

Besides, for each edge e = (vi, wjr) ∈ Ex̃, let b(e) ∈ b
denotes its associated bandwidth allocation. For each AP j,
we first sort all positive x̃ijm, for i ∈ I,m ∈ {0, 1, ..., πj},
in non-increasing order of m, where a larger m represents a
larger bandwidth allocation Bm. Let x̃j denote this sorted list,
and x̃j,s denote the s-th element in x̃j (lines 4–5).

If nj = 1, we create a single AP node wj1 for AP j and
establish connections between this AP node and all the tasks
with positive x̃ijm (lines 6–9).

If nj > 1 (e.g., Fig. 2), we create nj AP nodes for AP j. We
then traverse the sorted list x̃j from left to right, and link task
nodes to nodes of AP j such that the sum of fractions (Fx̃(e))
assigned to edges incident on each AP node is exactly 1 (line
13). This ensures that each AP node can accommodate exactly
one task node and prevents resource over-provisioning. For s-
element in x̃j , x̃j,s, we first compute

∑s−1
l=1 x̃j,l to determine

which AP node a task node should link to (line 11). Each
x̃j,s can create one or two edges, depending on the value of∑s

l=1 x̃j,l (lines 12–18).
The bipartite graph Bỹ = (Vỹ,Wỹ, Eỹ), c, and a fractional

matching Fỹ of Bỹ can be obtained using similar steps. Here,
Vỹ = {vi : i = 1, ..., I} is the set of task nodes, and Wỹ =
{wks : k = 1, ...,K, s = 1, ..., nk} is the set of server nodes,
where nk =

⌈∑
i,n ỹikn

⌉
. Besides, c is the set of computation

resource allocation associated with each edge in Eỹ.

Algorithm 2: BGConstruct
input : x̃ (obtained from Eq.(9))
output: Bx̃ = (Vx̃,Wx̃, Ex̃), b

1 Initialize Bx̃ = (Vx̃,Wx̃, Ex̃) and b;
2 Wx̃ ← {wjr | j = 1, ..., J, r = 1, ..., nj},
Vx̃ ← {vi | i = 1, ..., I}, Ex̃ ← ∅;

3 for each j ∈ J do
4 x̃j ← {x̃ijm ∈ x̃ | i ∈ I,m = 0, ..., πj , x̃ijm > 0};
5 sort x̃j in non-increasing order of m values (ties

broken arbitrary; x̃j,s denotes the s-th element in x̃j);
6 if nj == 1, for s← 1 to |x̃j | do
7 Suppose x̃j,s corresponds to x̃ijm;
8 Assign((vi, wj1), Bm, x̃ijm);
9 return;

/* for the case of nj > 1 */
10 for s← 1 to |x̃j | do
11 Suppose r − 1 ≤

∑s−1
l=1 x̃j,l < r for integer r;

12 if
∑s

l=1 x̃j,l ≤ r then
/* create one edge for x̃j,s linked to wjr */

13 Suppose x̃j,s corresponds to x̃ijm;
14 Assign((vi, wjr), Bm, x̃ijm);
15 else

/* create two edges for x̃j,s, one to
wjr, one to wj,r+1 */

16 Suppose x̃j,s corresponds to x̃ijm;
17 Assign((vi, wjr), Bm, r −

∑s−1
l=1 x̃j,l);

18 Assign((vi, wj,r+1), Bm,
∑s

l=1 x̃j,l − r)

19 Function Assign(e, b, x):
20 if e /∈ Ex̃ then Ex̃ ← Ex̃ ∪ {e}, b(e)← b ;
21 if e /∈ Ex̃, F x̃(e)← x; else F x̃(e)← F x̃(e) + x;

Time Complexity. For each AP j, there are at most I
tasks and U discrete bandwidth allocation options. Therefore,
x̃j contains at most IU elements. Sorting x̃j has a time
complexity of O(IU log(IU)), and at most two edges are
created for each x̃ijm > 0 (lines 12–18). There are at most J
APs. Therefore, the time complexity of BGConstruct for con-
structing Bx̃ is O(IJU log(IU)). Similarly, for each server k,
there are at most I tasks and V discrete computational resource
allocation options. The time complexity of BGConstruct for
constructing Bỹ is O(IKV log(IV)).

In the following lemma, we show that the total resource
allocations corresponding to any matching of Bx̃ (or Bỹ)
satisfies the resource constraints (6f) (or (6g)) of DTRP. This
property will then be used to show that any matching of the
weighted tripartite graph constructed in Subsection IV-C will
also satisfy the resource constraints of DTRP.

Lemma 3. Suppose Mx is any (integral) matching of Bx̃,
and My is any matching of Bỹ. Then, the total allocated
bandwidth or computation resource by an AP or a server does
not exceed its resource capacity, i.e.,∑I

i=1

∑nj

r=1 Mx(vi, wjr)b(vi, wjr) ≤ bj ,∀j ∈ J ;∑I
i=1

∑nk

s=1 My(vi, wks)c(vi, wks) ≤ ck,∀k ∈ K.

Proof. We apply BGConstruct to construct two bipartite
graphs (Bx̃ and Bỹ) based on the LP solution of RDP. This

Algorithm 3: WTGConsturct
input : z̃ (optimal solution for RDP)
output: H = (V1,V2,V3, E),b, c,u

1 Initialize H = (V1,V2,V3, E), b, c and u ;
2 Calculate x̃ and ỹ based on Eqs. (9) and (10);
3 Bx̃ = (Vx̃,Wx̃, Ex̃)← BGConstruct(x̃);
4 Bỹ = (Vỹ,Wỹ, Eỹ)← BGConstruct(ỹ);
5 V1 ← Vx̃,V2 ←Wx̃,V3 ←Wỹ, E ← ∅;
6 Sort z̃ in non-increasing order of Eijmkn values

(saved energy of combination ⟨i, j,m, k, n⟩);
7 forall z̃ijmkn ∈ z̃, z̃ijmkn > 0 do
8 Let Eijm be the set containing the one or two

edges in Ex̃ created based on x̃ijm, i.e., x̃j,s

(created in lines 12–18 of BGConstruct);
9 Let Eikn be the set containing the one or two

edges in Eỹ created based on ỹikn, i.e., ỹk,s
(created in lines 12–18 of BGConstruct);

10 for each (vi, wjr) ∈ Eijm, (vi, wks) ∈ Eikn do
11 Define edge e = (vi, wjr, wks);
12 if e /∈ E then
13 E ← E ∪ {e}, u(e)← Eijmkn, b(e)←

b(vi, wjr), c(e)← c(vi, wks);

construction method is inspired by the approach of Shmoys
and Tardos [34], who used it to build a bipartite graph
from the relaxed LP solution of a one-dimensional GAP.
They proved (Theorem 2.1 in [34]) that the total resource
usage of an integral matching (e.g., Mx) in the constructed
bipartite graph (e.g., Bx̃) does not exceed the resource capacity
specified in the LP (e.g., (1 − α)bj in constraint (8c)) plus
the maximum allocation allowed for a single task (e.g., αbj
in constraint (6h)). Although our problem allows different
resource allocations per task, the result of Shmoys and Tardos
remains applicable. We omit the formal proof here for brevity.
Consequently, the total bandwidth demand of Mx on any AP j
is at most (1−α)bj+αbj = bj . Similarly, the total computation
demand in Bỹ on any server k is at most ck.

C. Weighted Tripartite Graph Construction

The constructed bipartite graphs Bx̃ and Bỹ have the same
set of task nodes, which have a one-to-one correspondence
with all the tasks. Thus, we utilize WTGConstruct (Algo-
rithm 3) to define a weighted tripartite graph H = (V1 ∪V2 ∪
V3, E) by merging Bx̃ and Bỹ. For ease of presentation, we
also use b and c to denote the communication and computation
resource allocations associated with each edge in E , and use
u to denote the weight assigned to each edge in E . Let V1
contain all the task nodes, V2 contain all the AP nodes, and
V3 contain all the server nodes (line 5). We first sort z̃ in non-
increasing order of Eijmkn values (ties broken arbitrarily).
Each z̃ijmkn > 0 will result in a x̃ijm > 0 based on Eq. (9),
which can define to at most two edges in Bx̃ based on lines
12–18 of BGConstruct. Similarly, each z̃ijmkn > 0 will result
in a ỹikn > 0 based on Eq. (10), which can define to at most

two edges in Bỹ. Therefore, for each z̃ijmkn > 0, we can
determine the corresponding edge sets Eijm and Eikn (lines
8–9). Then, for each possible merged edge e, if it has not
been added to set E , we add it to set E , and assign its weight
u(e), bandwidth allocation b(e), and computation resource
allocation c(e) (lines 10–13).

Time Complexity. The time complexity of BGConstruct

for constructing Bx̃ and Bỹ are O(IJU log(IU)) and
O(IKV log(IV)), respectively. The number of positive
z̃ijmkn is at most IJUKV , and the time complexity for sort-
ing them is O(IJUKV log(IJUKV)). Each positive z̃ijmkn

can define at most 4 edges. Therefore, the time complexity of
WTGConstruct is O(IJUKV log(IJUKV)).

The following two lemmas summarize some properties of
the constructed weighted tripartite graph. feasible combina-
tions ⟨i, j,m, k, n⟩ can have z̃ijmkn > 0, and Lemma 5 holds
because of Lemma 3.

Lemma 4. ∀(vi, wjr, wks) ∈ E , the deadline of task i can be
met with the task-AP-server combination (i, j, k) and resource
allocations (b(vi, wjr, wks), c(vi, wjr, wks)).

Proof. Based on line 7 of WTGConstruct, we only con-
struct an edge ∀(vi, wjr, wks) ∈ E when the corresponding
z̃ijmkn ≥ 0. We only define variable z̃ijmkn when the
combination ⟨i, j,m, k, n⟩ is feasible, which meets the task
deadline requirement (Proposition 1). Based on line 13 of
WTGConstruct, we set b(vi, wjr, wks) = b(vi, wjr), where
b(vi, wjr) ≥ Bm based on line 20 of BGConstruct. Similarly,
we have c(vi, wjr, wks) ≥ Cn. Given the task mapping to AP
j and server k, since the deadline of task i can be met with
resource allocation Bm and Cn, the deadline of task i can also
be met with resource allocation b(vi, wjr) and c(vi, wks) as
the same or more resource are allocated.

Lemma 5. Suppose function Mz is any (integral) matching
of the constructed weighted tripartite graph H = (V1 ∪ V2 ∪
V3, E). We can obtain the following conclusions:

I∑
i=1

nj∑
r=1

∑
wks∈V3

Mz(vi, wjr, wks)b(vi, wjr, wks) ≤ bj ,∀j ∈ J ;

I∑
i=1

∑
wjr∈V2

nk∑
s=1

Mz(vi, wjr, wks)c(vi, wjr, wks) ≤ ck,∀k ∈ K.

Proof. Based on a matching Mz for the tripartite graph H, we
can easily construct a matching Mx for the bipartite graph Bx̃
by letting

Mx(vi, wjr) =
∑

wks∈V3

Mz(vi, wjr, wks).

Similarly, we can construct a matching My for the bipartite
graph Bỹ by letting

My(vi, wks) =
∑

wjr∈V2

Mz(vi, wjr, wks).

Tripartite Graph Construction +
𝟑𝑫𝑴 Formulation
𝑶𝑷𝑻𝑹𝑫𝑷 ≤ 𝑶𝑷𝑻𝟑𝑫𝑴

𝑹𝑫𝑷 Formulation
(𝟏 − 𝜶)

𝝋
𝑶𝑷𝑻𝑫𝑻𝑹𝑷 ≤ 𝑶𝑷𝑻𝑹𝑫𝑷

෤𝒛𝐷𝑇𝑅𝑃
Rounding Algorithm
𝟏

𝟐
𝑶𝑷𝑻𝟑𝑫𝑴 ≤ 𝑶𝑩𝑱𝑮𝑴𝑨

3𝐷𝑀 𝐱, 𝐲
𝐛, 𝐜, 𝐩

Let 𝝋 = 𝟏 +
𝝐

𝟐
, then

𝟏−𝜶

𝟐+𝝐
𝑶𝑷𝑻𝑫𝑻𝑹𝑷 ≤

𝟏

𝟐
𝑶𝑷𝑻𝑹𝑫𝑷 ≤

𝟏

𝟐
𝑶𝑷𝑻𝟑𝑫𝑴 ≤ 𝑶𝑩𝑱𝑮𝑴𝑨

Fig. 3. GMA flow and its approximation ratio induction

Since b(vi, wjr, wks) = b(vi, wjr) and c(vi, wjr, wks) =
c(vi, wks) according to line 13 of WTGConstruct, this lemma
can be proved following the result of Lemma 3.

By combining Lemma 4 and Lemma 5, we can conclude that
any matching of H satisfies the deadline, offloading power,
and resource constraints in DTRP. As each task i has only
one corresponding task node vi, and every edge (vi, wjr, wks)
of H corresponds to a task-to-AP-server mapping (i, j, k),
a matching of H can be converted into a feasible solution
for DTRP. We first define a relaxed maximum weighted
3-dimensional matching problem, which aims to identify a
fractional matching Fz for H with maximum total weight. Let
e represent edge (vi, wjr, wks), and V = V1 ∪ V2 ∪ V3. We
denote this LP problem as 3DM and formulate it as follows.

(3DM) max
∑

e∈E Fz(e)u(e) (12)

subject to: ∑
e∈{e′:e′∈E,v∈e′} Fz(e) ≤ 1,∀v ∈ V (12a)

Fz(e) ≥ 0,∀e ∈ E (12b)

Eq. (12a) ensures that the total fractions (Fz(e)) of edges
incident on node v do not exceed 1 for any v ∈ V . We can
derive the following lemma based on the formulation of 3DM.

Lemma 6. OPTRDP ≤ OPT3DM

Proof. In Algorithm 3, we construct edges for all z̃ijmkn > 0.
Thus, for an optimal solution z̃ of RDP, we can construct a
feasible solution Mz of 3DM that satisfies∑nj

r=1

∑nk

s=1Mz(vi, wjr, wks) =
∑πj

m=0

∑λk

n=0 z̃ijmkn.

Since the objective value corresponding to this constructed
Mz is no greater than OPT3DM, Lemma 6 follows.

Here, we employ an algorithm introduced by Chan and
Lau, namely the k-Dimensional Matching Algorithm (kDMA)
[35], to convert the optimal fractional solution for 3DM into
a matching of H. In kDMA, Chan and Lau first solve 3DM,
and sort all edges e with positive Fz(e) based on a partial
ordering. Then, a recursive function is applied to the sorted
list. In each recursive call, one edge e is considered, and
the marginal utility of remaining edges is updated based on
the selection decision of e. This recursive function eventually
returns a (integral) matching Mz for H. (The details of kDMA
are presented in Appendix D.)

Time Complexity. In WTGConstruct, there are at most
IJUKV positive z̃ijkmn, which defines at most 4IJUKV
edges in the weighted tripartite graph H. Therefore, 3DM has
at most 4IJUKV edges, solving which takes O((IJUKV)3)

time [36]. The edge sorting operation takes O((IJUKV)2).
In the recursive function, there are at most 4IJUKV recursive
layers. In each recursive layer, the marginal utilities of at most
4IJUKV remaining edges are updated. Therefore, the time
complexity of algorithm kDMA is O((IJUKV)3). Based on
their findings, we present the following proposition.

Proposition 2. (Theorem 2.6, [35]) kDMA can obtain a match-
ing Mz of H from the optimal solution of 3DM, satisfying the
condition

OBJGMA =
∑

e∈E Mz(e)u(e) ≥ 1
2OPT3DM.

Next, we prove the theoretical guarantee of GMA. For ease
of understanding, we also provide an algorithm flow of GMA

and its approximation ratio induction overview in Fig. 3.

Theorem 1. Let ϵ denote the resource discretization loss,
where ϵ > 0 and φ = 1+ ϵ

2 (φ is the discretization step defined
in Subsection IV-A). GMA yields a feasible task offloading and
resource allocation solution {x,y,b, c,p} for DTRP with an
objective value OBJGMA ≥ 1−α

2+ϵ OPTDTRP.

Proof. For each Mz(vi, wjr, wks) = 1, GMA sets xij = 1,
yik = 1, bij = b(vi, wjr, wks), and cik = c(vi, wjr, wks).
As each task only has one corresponding task node in graph
H, at most one edge that contains node vi can be selected
for each task i in a matching of H. Thus, OBJGMA =∑

e∈E Mz(e)u(e), and the resulting solution {x,y,b, c,p}
satisfies constraints (6c)∼(6e) of DTRP. Based on Lemma 4
and Lemma 5, the resulting solution also satisfies the deadline,
offloading power and resource constraints of DTRP. There-
fore, the resulting solution is a feasible solution for DTRP.

According to Proposition 2, OBJGMA ≥ 1
2OPT3DM. Besides,

based on Lemma 6 (OPT3DM ≥ OPTRDP) and Lemma 2
(OPTRDP ≥ 1−α

φ OPTDTRP), we can conclude

OBJGMA ≥ 1
2OPT3DM ≥ 1

2OPTRDP ≥ 1−α
2φ OPTDTRP.

Substituting φ = 1+ ϵ
2 , we get OBJGMA ≥ 1−α

2+ϵ OPTDTRP. In
Subsection IV-A, we set πj =

⌈
logφ(αbj)

⌉
. To ensure πj is

polynomial in the size of input bj , φ should be strictly greater
than 1. As a result, ϵ > 0.

GMA Time Complexity Analysis:
• Line 1: The LP problem RDP has at most IJUKV

variables, solving which takes O((IJUKV)3) time [36].
• Line 2: Using WTGConstruct to construct the tripartite

graph takes O(IJUKV log(IJUKV)) time.
• Line 3: The time complexity of kDMA is O((IJUKV)3).

Therefore, the time complexity for obtaining a matching
H is O((IJUKV)3).

• Line 4–7: The time complexity is O(I) since at most I
tasks can be offloaded.

As a result, the time complexity of GMA is O((IJUKV)3).
In Subsection IV-A, we introduce a logarithmic function to
discretize the resource allocation. This log-based discretization
ensures that U and V grow polynomially with respect to the
input sizes of bj and ck. Hence, the overall time complexity
of GMA becomes polynomial in the input size of DTRP.

Discussion. In GMA, we incorporate the tripartite graph
matching algorithm proposed by Chan and Lau [35]. However,
their method alone does not determine task-specific resource
allocations. To address this, GMA introduces a novel combina-
tion of resource discretization and tripartite graph construction,
enabling joint optimization of task mapping (to both APs
and servers), resource allocation (for both offloading and
processing), and offloading power control. This constitutes
the first approximation algorithm for DTRP with polynomial-
time complexity. In real-world cloud infrastructures, resource
allocation bounds are typically tight. For instance, Alibaba dat-
acenters allow servers with over 96 logical CPU cores, yet cap
per-task allocations at 16 cores [37]. Similarly, Google Cloud
Run [25], Azure Functions [38], and AWS Lambda [27] limit
allocations to 8, 4, and 6 cores, respectively. These configura-
tions imply that the resource allocation bound α is generally
no greater than 1

6 in practice, making the approximation ratio
of GMA close to 1

2 (since ϵ is a small positive constant). Finally,
we note that DTRP is significantly more complex than GAP,
for which the best-known and tight approximation ratio is
1
2 [34]. Therefore, achieving a provable bound exceeding 1

2
for DTRP is unlikely. These insights suggest that GMA offers a
practical deterministic bound approaching its maximum likely
approximation ratio of 1

2 .

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of GMA through
numerical simulations. To ensure a comprehensive assessment,
we compare GMA with two existing heuristic algorithms based
on the achieved performance ratio R, defined as

R =
total saved energy by the algorithm

total saved energy by an optimal policy
.

Optimal Policy: Since obtaining the exact solution to DTRP
is intractable, we formulate a new LP problem derived from
RDP by replacing (1 − α) in Eqs. (8c) and (8d) with the
discretization factor φ. It can be shown (similar to the proof
of Lemma 2) that the optimal solution of this LP problem
is at least as large as OPTDTRP. Therefore, we adopt this
solution as the optimal policy for computing R. Since the
denominator is no less than OPTDTRP, the computed value
of R underestimates the true performance ratio based on the
actual optimal saved energy OPTDTRP. As a result, the values
reported in Figs. 4 and 5 serve as lower bounds on the actual
performance that the algorithms can achieve.

A. MEC Architecture and Taskset Generation
We sample system-related parameters and tasksets from

ranges considered in existing studies and practical systems.

The numbers of APs and servers are fixed at 12 and 15,
respectively. 12 of the 15 servers are co-located with APs. We
sample ck of each server k ∈ K within 20 ∼ 30 Giga cycles/s
[39], and choose bj of each AP j ∈ J from {80, 120} MHz
(802.11n Wi-Fi Protocol) [32]. The backhaul network delay
δjk is sampled from 3 ∼ 30 ms [24]. We set the wireless
network channel gain Gij as −50 dB [40], noise power σ2 as
8e−8, and maximum offloading power pmax as 0.1 W [41].

We generate tasksets with varying resource utilization tar-
gets ⟨rb, rc⟩, and taskset size I . The resource utilization
target rb (rc) of a taskset is the ratio of the total targeted
communication (computation) resource demand of all tasks in
a taskset to the total communication (computation) resource
of the system [19]. We consider two ranges, LR = [0.7, 1]
and HR = [1.2, 1.5], and sample ⟨rb, rc⟩ from four different
range combinations: ⟨LR,LR⟩, ⟨LR,HR⟩, ⟨HR,LR⟩, and
⟨HR,HR⟩. For each range combination, we sample 30 dif-
ferent ⟨rb, rc⟩ values. For each sampled ⟨rb, rc⟩, we sample
30 different I from [50, 200].

Given the values for ⟨rb, rc⟩ and I , we generate a single
taskset as follows. We randomly sample si in [100, 200] Kb
that matches the size of a typical image and set ηi = 150
for each task i [17]. Next, we sample the local computation
resource capacity fi within [1, 2] Giga cycles/s [41]. Given rb
and rc, let Rb = rb

∑
j∈J bj

and Rc = rc
∑

k∈K ck be the
targeted bandwidth and computation resource demand of the
taskset, respectively. Then, we use Stafford’s Randfixedsum
Algorithm [42] to distribute Rb and Rc to each individual
task in the taskset in a uniformly random and unbiased
manner. Let Ri

b and Ri
k be the assigned targeted bandwidth

and computation resource demand of task i. We set di with
di =

si
rij

+ δi +
siηi

Ri
k

, where δi ∼ N (8, 3) ms covers half of
the sample range of δjk, and rij is computed based on Eq.
(2) with poij = pmax and bij = Ri

b. For each taskset, we
choose |Ji| in {2, 3} and randomly assign tasks to APs, while
ensuring that the number of tasks that can be offloaded to
each AP is drawn from a normal distribution. This, combined
with Stafford’s Randfixedsum Algorithm for tasks’ targeted
resource demand assignment, ensures we generate various
distributions of workload demand and their assignment to APs,
in an unbiased manner.

Baseline Algorithms. We employ two heuristic algorithms
proposed by Gao et al. [19], namely ZSG and LDM, as the
baseline algorithms. Their study proposed a similar MEC
architecture, and jointly considered task mapping (to both APs
and servers) and resource allocations (for both offloading and
processing) for deadline-constrained tasks, with the aim of
maximizing user-defined profit.

1) For each task mapping, ZSG estimates the time for task
offloading and task processing based on the task’s data
size and required compute cycles, which are then used
to compute the resource allocations. Then, ZSG greedily
selects the mapping and resource allocation with the
highest energy-to-resource allocation ratio whenever the
system possesses sufficient resources.

(b) 𝜶 =
𝟏

𝟏𝟐
(Bound of Google Cloud Run) (c) 𝜶 =

𝟏

𝟔
(Bound of Alibaba Cloud)(a) 𝜶 =

𝟏

𝟏𝟔
(Bound of Amazon AWS Lambda)

GMA Theoretical
Bound = 0.378

GMA Theoretical Bound = 0.426 GMA Theoretical Bound = 0.417

GMA LDM

ZSG

Fig. 4. Performance Ratio (R) by different algorithms (GMA, ZSG, LDM) under varying resource allocation bounds α

Fig. 5. Achieved Acceptance Ratio by GMA

2) LDM reformulates DTRP into an Integer Linear Program-
ming (ILP) problem by discretizing the system’s resource
allocations using equal-sized intervals, where the interval
sizes of 1 MHz and 50 Mega cycles/s are used for band-
width and computational resources, respectively. Then, an
ILP solver is employed to solve the ILP problem.

We set ϵ as 0.2 for GMA, and allocate the same runtime for
LDM as GMA. For each taskset, we run GMA, ZSG, and LDM
with varying α in { 1

16 ,
1
12 ,

1
6} (bounds obtained from Amazon

AWS Lambda, Google Cloud Run, and Alibaba Cloud). Thus,
each algorithm runs 10800 simulations. Experiments were
conducted on a desktop PC with an Intel(R) Xeon(R) E7-
8880V4 2.20GHz CPU and 32GB of RAM.

B. Performance Evaluation

We evaluate the performance of different algorithms by
comparing the achieved performance ratio R under various
α values (Fig. 4). (Note that the line in the middle of the box
refers to the median value, and the black square dot refers
to the average value.) GMA achieves an average performance
ratio of 99.5% for α = 1

16 , 98.1% for α = 1
12 , and 95.3%

for α = 1
6 . Considering ϵ = 0.2, GMA provides a theoretical

bound of 0.426 for α = 1
16 , 0.417 for α = 1

12 , and 0.378
for α = 1

6 . As a result, GMA’s practical performance surpasses
its theoretical bounds by an average of 56.93%, and shows its
stability under varying resource allocation bounds and resource
usage levels. The results also show that GMA effectively bridges

the gap between its theoretical bound and the optimal solution,
showing the practical efficiency of GMA.
GMA exhibits an average performance ratio that is 22.04%

and 7.36% higher than ZSG and LDM, respectively. Notably,
unlike GMA, both ZSG and LDM do not have any theoretical
guarantees. Compared to ZSG, GMA performs significantly
better and has far less variability. Besides, the performance
of LDM is comparable with GMA when α equals 1

16 and 1
12 , but

degrades and becomes highly variable when α = 1
6 . Thus,

in conclusion, GMA provides the first algorithm for solving
DTRP with a theoretical approximation bound and excellent
performance with low variation for practical systems.

We also evaluate the achieved acceptance ratio by GMA under
various α values (Fig. 5). The acceptance ratio is the ratio of
the number of tasks being offloaded to the number of tasks
in the taskset. GMA achieves an average acceptance ratio of
64.7% for α = 1

16 , 87.7% for α = 1
12 , and 98.2% for α = 1

6 .
As illustrated in Fig. 5, the acceptance ratio exhibits a notable
sensitivity to the choice of α, where a higher α corresponds
to an elevated average acceptance ratio. This correlation arises
because a larger α increases the resources that can be allocated
to each task, thereby enhancing their ability to meet deadlines
and resulting in an elevated acceptance ratio. Furthermore, our
observations indicate that an increasing resource utilization
target ⟨rb, rc⟩ is associated with a marginal decrease in the
acceptance ratio. This phenomenon arises due to the inherent
complexity of provisioning tasksets with higher resource uti-
lization targets, making them comparatively more challenging
to accommodate.

VI. CONCLUSION

This paper investigated the deadline-constrained task of-
floading and resource allocation problem in MEC with both
communication and computation resource contentions. In this
general system, we jointly optimized task mapping to both
APs and servers, resource allocation for offloading and pro-
cessing, and dynamic offloading power control. To address this
problem, we proposed the Graph-Matching-based Approxima-
tion Algorithm (GMA), the first polynomial-time approximation
algorithm of its kind. GMA achieves a provable approximation
ratio of 1−α

2+ϵ , where α is the resource allocation bound and ϵ is
a small positive constant. Experimental results demonstrated

that GMA consistently outperforms existing baseline algorithms
in both effectiveness and stability.

For future work, we plan to investigate the resource aug-
mentation problem in MEC. Specifically, given that a feasible
solution exists that admits all tasks, the goal is to find a
solution that minimizes overall system resource usage while
ensuring all tasks are still successfully admitted.

APPENDIX A
FRACTIONAL MATCHING AND MATCHING

Consider a graph G = (V, E), where V is the node set
and E is the edge set. A fractional matching [43] of G is
a function m that assigns each edge e ∈ E with a fraction
me in the range of [0, 1], such that for every node v ∈ V ,
the total fractions of edges incident on v is at most 1, i.e.,∑

e:v∈e,e∈E me ≤ 1,∀v ∈ V . If me ∈ {0, 1} for each edge
in E , m is a (integral) matching [44] of G. An example is
provided in Fig. 6.

𝑚𝑒1 = 0.7, 𝑚𝑒2 = 0.3,
𝑚𝑒3 = 0, 𝑚𝑒4 = 0.3,

𝑚𝑒5 = 0.7

𝑒1 𝑒2

𝑒3

𝑒4

𝑒5

fractional matching 𝒎
𝑚𝑒1 = 1, 𝑚𝑒2 = 0,
𝑚𝑒3 = 0, 𝑚𝑒4 = 1,

𝑚𝑒5 = 0

(integral) matching 𝒎

Fig. 6. An example of a fractional matching and a (integral) matching of a
graph with 5 nodes and 5 edges.

APPENDIX B
BIPARTITE GRAPH

A bipartite graph [44] B = (V,W, E) is a graph whose
nodes can be divided into two disjoint and independent sets
V and W , and every edge in the edge set E connects a node
in V to a node in W . Besides, no edge connects two nodes in
the same set. An example of a bipartite graph is provided on
the left of Fig. 7, where each edge comprises two nodes, one
from each partitioned node set.

APPENDIX C
WEIGHTED TRIPARTITE GRAPH

A tripartite graph [35] H = (V, E) is a hypergraph whose
node set V can be partitioned into three disjoint and inde-
pendent sets, V1,V2 and V3. Each edge e ∈ E is a subset
of V , which contains exactly three nodes and intersects each
partitioned set (V1,V2 or V3) in exactly one node. A weighted
tripartite graph is a tripartite graph where each edge e ∈ E
is associated with a real-valued weight ue. An example of a
tripartite graph is provided on the right of Fig. 7.

bipartite graph tripartite graph

𝑣1
𝑣2

e.g., 𝑒1 = (𝑣1, 𝑣2)

𝑣1

𝑣2

𝑣3

e.g., 𝑒1 = (𝑣1, 𝑣2, 𝑣3)

𝒱
𝒲

𝒱1 𝒱2
𝒱3

Fig. 7. An example of a bipartite graph (left) and a tripartite graph (right).

APPENDIX D
K-DIMENSIONAL MATCHING ALGORITHM

Algorithm 4: kDMA [35]

1 Find an optimal basic solution Fz to 3DM. Remove
every hyperedge e from E with Fz(e) = 0. Initialize
Q ← ∅;

2 for s← 1 to |E| do
/* Let N (e) denote the set of hyperedges

that intersect e, including e itself */
3 Find a hyperedge e with Fz(N (e)) ≤ 2;
4 Add e to the end of Q, and remove it from E ;
5 Remove Fz(e) from Fz;
6 Mz ← LocalRatio(Q,u);
7 return Mz;

/* a recursive subroutine */
8 Function LocalRatio(Q,u):
9 Remove from Q all hyperedges with non-positive

weights;
10 if Q = ∅ then return ∅;
11 Choose the leftmost hyperedge e from updated Q.

Decompose the weight vector u = u1 +u2 where

u1(e
′) =

{
u(e) if e′ ∈ N (e),

0 otherwise.

S ′ ← LocalRatio(Q,u2);
12 if S ′ ∪ {e} is a matching then return S = S ′ ∪ {e};

else return S = S ′;

REFERENCES

[1] M. Aazam, S. Zeadally, and K. A. Harras, “Fog computing architec-
ture, evaluation, and future research directions,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 46–52, 2018.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58 443–58 469, 2020.

[3] S. Ramanathan, N. Shivaraman, S. Suryasekaran, A. Easwaran, E. Borde,
and S. Steinhorst, “A survey on time-sensitive resource allocation in the
cloud continuum,” it - Information Technology, vol. 62, no. 5-6, pp. 241–
255, 2020. [Online]. Available: https://doi.org/10.1515/itit-2020-0013

[4] H. Zhou, Z. Zhang, D. Li, and Z. Su, “Joint optimization of computing
offloading and service caching in edge computing-based smart grid,”
IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 1122–1132,
2023.

[5] J. Liu, S. Guo, Q. Wang, C. Pan, and L. Yang, “Optimal multi-user
offloading with resources allocation in mobile edge cloud computing,”
Computer Networks, vol. 221, p. 109522, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128622005564

[6] C. Xu, G. Zheng, and X. Zhao, “Energy-minimization task offloading
and resource allocation for mobile edge computing in noma heteroge-
neous networks,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 16 001–16 016, 2020.

[7] P. Dai, K. Liu, X. Wu, H. Xing, Z. Yu, and V. C. S. Lee, “A learning
algorithm for real-time service in vehicular networks with mobile-edge
computing,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–6.

[8] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing based
on v2i and v2v modes,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 4, pp. 4277–4292, 2023.

https://doi.org/10.1515/itit-2020-0013
https://www.sciencedirect.com/science/article/pii/S1389128622005564

[9] M. Zhao, J.-J. Yu, W.-T. Li, D. Liu, S. Yao, W. Feng, C. She, and
T. Q. S. Quek, “Energy-aware task offloading and resource allocation
for time-sensitive services in mobile edge computing systems,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10 925–
10 940, 2021.

[10] X. Chen and G. Liu, “Energy-efficient task offloading and resource
allocation via deep reinforcement learning for augmented reality in
mobile edge networks,” IEEE Internet of Things Journal, vol. 8, no. 13,
pp. 10 843–10 856, 2021.

[11] J. Baek and G. Kaddoum, “Heterogeneous task offloading and resource
allocations via deep recurrent reinforcement learning in partial observ-
able multifog networks,” IEEE Internet of Things Journal, vol. 8, no. 2,
pp. 1041–1056, 2021.

[12] H. Yuan and M. Zhou, “Profit-maximized collaborative computation of-
floading and resource allocation in distributed cloud and edge computing
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 18, no. 3, pp. 1277–1287, 2021.

[13] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, “Deadline-aware
task scheduling in a tiered iot infrastructure,” in GLOBECOM 2017 -
2017 IEEE Global Communications Conference, 2017, pp. 1–7.

[14] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint offloading and resource
allocation in vehicular edge computing and networks,” in 2018 IEEE
Global Communications Conference (GLOBECOM), 2018, pp. 1–7.

[15] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Edge intelligence for
energy-efficient computation offloading and resource allocation in 5g
beyond,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10,
pp. 12 175–12 186, 2020.

[16] T. T. Vu, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, and T. V.
Nguyen, “Optimal energy efficiency with delay constraints for multi-
layer cooperative fog computing networks,” IEEE Transactions on
Communications, vol. 69, no. 6, pp. 3911–3929, 2021.

[17] C. Xu, G. Zheng, and X. Zhao, “Energy-minimization task offloading
and resource allocation for mobile edge computing in noma heteroge-
neous networks,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 16 001–16 016, 2020.

[18] Q. Li, J. Zhao, and Y. Gong, “Cooperative computation offloading and
resource allocation for mobile edge computing,” in 2019 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2019, pp. 1–6.

[19] C. Gao, A. Shaan, and A. Easwaran, “Deadline-constrained multi-
resource task mapping and allocation for edge-cloud systems,” in
GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
2022, pp. 5037–5043.

[20] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA: SIAM, 2009, chapter 7: Multi-dimensional Assign-
ment Problems.

[21] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey
on task offloading in multi-access edge computing,” Journal of
Systems Architecture, vol. 118, p. 102225, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762121001570

[22] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis,
J. Violos, A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Pa-
pavassiliou, “Task offloading in edge and cloud computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, vol. 195, p. 108177, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128621002322

[23] N. Santi and N. Mitton, “A resource management survey for mission
critical and time critical applications in multi access edge computing,”
ITU Journal on Future and Evolving Technologies, vol. 2, no. 2, Nov.
2021. [Online]. Available: https://hal.science/hal-03420193

[24] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

[25] G. Cloud, “Cloud run cpu limits,” 2023. [Online]. Available:
https://cloud.google.com/run/docs/configuring/cpu

[26] K. Wang, Y. Li, C. Wang, T. Jia, K. Chow, Y. Wen, Y. Dou, G. Xu,
C. Hou, J. Yao, and L. Zhang, “Characterizing job microarchitectural
profiles at scale: Dataset and analysis,” in Proceedings of the 51st
International Conference on Parallel Processing, ser. ICPP ’22. New
York, NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3545008.3545026

[27] A. AWS, “Aws lambda now supports up to 10 gb of
memory and 6 vcpu cores for lambda functions,” 2020. [On-

line]. Available: https://aws.amazon.com/about-aws/whats-new/2020/12/
aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/

[28] Qualcomm, “802.11ac mu-mimo: Bridging the
mimo gap in wi-fi,” 2023. [Online]. Available:
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/
documents/802.11ac mu-mimo bridging the mimo gap in wi-fi.pdf

[29] D. Han, W. Chen, and Y. Fang, “Joint channel and queue aware
scheduling for latency sensitive mobile edge computing with power
constraints,” IEEE Transactions on Wireless Communications, vol. 19,
no. 6, pp. 3938–3951, 2020.

[30] L. Li, T. Q. Quek, J. Ren, H. H. Yang, Z. Chen, and Y. Zhang, “An
incentive-aware job offloading control framework for multi-access edge
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 1,
pp. 63–75, 2021.

[31] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[32] Intel, “Different wi-fi protocols and data rates,” 2023.
[Online]. Available: https://www.intel.com/content/www/us/en/support/
articles/000005725/wireless/legacy-intel-wireless-products.html

[33] T. J. Xia and G. A. Wellbrock, “Commercial 100-gbit/s coherent
transmission systems,” Optical Fiber Telecommunications, pp. 45–82,
2013.

[34] D. B. Shmoys and É. Tardos, “An approximation algorithm for the
generalized assignment problem,” Mathematical programming, vol. 62,
no. 1, pp. 461–474, 1993.

[35] Y. H. Chan and L. C. Lau, “On linear and semidefinite programming
relaxations for hypergraph matching,” Mathematical programming, vol.
135, no. 1, pp. 123–148, 2012.

[36] P. M. Vaidya, “An algorithm for linear programming which requires
o(((m+n)n2+(m+n)1.5n)l) arithmetic operations,” in Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, ser. STOC
’87. New York, NY, USA: Association for Computing Machinery, 1987,
p. 29–38. [Online]. Available: https://doi.org/10.1145/28395.28399

[37] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li,
L. Zhang, W. Lin, and Y. Ding, “MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous GPU clusters,”
in 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). Renton, WA: USENIX Association,
Apr. 2022, pp. 945–960. [Online]. Available: https://www.usenix.org/
conference/nsdi22/presentation/weng

[38] Microsoft, “Azure functions premium plan,” 2023. [On-
line]. Available: https://learn.microsoft.com/fi-fi/azure/azure-functions/
functions-premium-plan?tabs=portal#available-instance-skus

[39] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “A dataset for
mobile edge computing network topologies,” Data in Brief, vol. 39,
p. 107557, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352340921008337

[40] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximiza-
tion in uav-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp.
1927–1941, 2018.

[41] K. Li, J. Zhao, J. Hu, and Y. Chen, “Dynamic energy efficient
task offloading and resource allocation for noma-enabled iot in smart
buildings and environment,” Building and Environment, vol. 226,
p. 109513, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360132322007430

[42] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), 2010, pp. 6–11.

[43] R. Aharoni and O. Kessler, “On a possible extension of hall’s
theorem to bipartite hypergraphs,” Discrete Mathematics, vol. 84, no. 3,
pp. 309–313, 1990. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0012365X90901366

[44] L. Lovász and M. D. Plummer, Matching theory. American Mathe-
matical Soc., 2009, vol. 367.

https://www.sciencedirect.com/science/article/pii/S1383762121001570
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://hal.science/hal-03420193
https://cloud.google.com/run/docs/configuring/cpu
https://doi.org/10.1145/3545008.3545026
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/802.11ac_mu-mimo_bridging_the_mimo_gap_in_wi-fi.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/802.11ac_mu-mimo_bridging_the_mimo_gap_in_wi-fi.pdf
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://doi.org/10.1145/28395.28399
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://learn.microsoft.com/fi-fi/azure/azure-functions/functions-premium-plan?tabs=portal#available-instance-skus
https://learn.microsoft.com/fi-fi/azure/azure-functions/functions-premium-plan?tabs=portal#available-instance-skus
https://www.sciencedirect.com/science/article/pii/S2352340921008337
https://www.sciencedirect.com/science/article/pii/S2352340921008337
https://www.sciencedirect.com/science/article/pii/S0360132322007430
https://www.sciencedirect.com/science/article/pii/S0360132322007430
https://www.sciencedirect.com/science/article/pii/0012365X90901366
https://www.sciencedirect.com/science/article/pii/0012365X90901366

	Introduction
	Literature Review
	System Model and Problem Formulation
	MEC Architecture
	Problem Formulation

	GMA Approximation Algorithm
	Resource Allocation Discretization and LP Formulation
	Bipartite Graph Construction
	Weighted Tripartite Graph Construction

	Experimental Evaluation
	MEC Architecture and Taskset Generation
	Performance Evaluation

	Conclusion
	Appendix A: Fractional Matching and Matching
	Appendix B: Bipartite Graph
	Appendix C: Weighted Tripartite Graph
	Appendix D: k-Dimensional Matching Algorithm
	References

